Copied to
clipboard

?

G = C22×D40order 320 = 26·5

Direct product of C22 and D40

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×D40, C409C23, D204C23, C20.55C24, C23.61D20, (C2×C10)⋊6D8, C101(C2×D8), C51(C22×D8), (C2×C8)⋊33D10, (C22×C8)⋊7D5, C88(C22×D5), C4.45(C2×D20), (C22×C40)⋊11C2, (C2×C40)⋊44C22, C20.290(C2×D4), (C2×C20).391D4, (C2×C4).100D20, C4.52(C23×D5), (C22×D20)⋊11C2, (C2×D20)⋊48C22, C2.24(C22×D20), C10.22(C22×D4), C22.70(C2×D20), (C2×C20).787C23, (C22×C4).443D10, (C22×C10).145D4, (C22×C20).526C22, (C2×C10).178(C2×D4), (C2×C4).736(C22×D5), SmallGroup(320,1412)

Series: Derived Chief Lower central Upper central

C1C20 — C22×D40
C1C5C10C20D20C2×D20C22×D20 — C22×D40
C5C10C20 — C22×D40

Subgroups: 1822 in 338 conjugacy classes, 127 normal (13 characteristic)
C1, C2, C2 [×6], C2 [×8], C4, C4 [×3], C22 [×7], C22 [×32], C5, C8 [×4], C2×C4 [×6], D4 [×20], C23, C23 [×20], D5 [×8], C10, C10 [×6], C2×C8 [×6], D8 [×16], C22×C4, C2×D4 [×18], C24 [×2], C20, C20 [×3], D10 [×32], C2×C10 [×7], C22×C8, C2×D8 [×12], C22×D4 [×2], C40 [×4], D20 [×8], D20 [×12], C2×C20 [×6], C22×D5 [×20], C22×C10, C22×D8, D40 [×16], C2×C40 [×6], C2×D20 [×12], C2×D20 [×6], C22×C20, C23×D5 [×2], C2×D40 [×12], C22×C40, C22×D20 [×2], C22×D40

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, D8 [×4], C2×D4 [×6], C24, D10 [×7], C2×D8 [×6], C22×D4, D20 [×4], C22×D5 [×7], C22×D8, D40 [×4], C2×D20 [×6], C23×D5, C2×D40 [×6], C22×D20, C22×D40

Generators and relations
 G = < a,b,c,d | a2=b2=c40=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 81)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 121)(70 122)(71 123)(72 124)(73 125)(74 126)(75 127)(76 128)(77 129)(78 130)(79 131)(80 132)
(1 78)(2 79)(3 80)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)(38 75)(39 76)(40 77)(81 129)(82 130)(83 131)(84 132)(85 133)(86 134)(87 135)(88 136)(89 137)(90 138)(91 139)(92 140)(93 141)(94 142)(95 143)(96 144)(97 145)(98 146)(99 147)(100 148)(101 149)(102 150)(103 151)(104 152)(105 153)(106 154)(107 155)(108 156)(109 157)(110 158)(111 159)(112 160)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 62)(2 61)(3 60)(4 59)(5 58)(6 57)(7 56)(8 55)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 80)(24 79)(25 78)(26 77)(27 76)(28 75)(29 74)(30 73)(31 72)(32 71)(33 70)(34 69)(35 68)(36 67)(37 66)(38 65)(39 64)(40 63)(81 155)(82 154)(83 153)(84 152)(85 151)(86 150)(87 149)(88 148)(89 147)(90 146)(91 145)(92 144)(93 143)(94 142)(95 141)(96 140)(97 139)(98 138)(99 137)(100 136)(101 135)(102 134)(103 133)(104 132)(105 131)(106 130)(107 129)(108 128)(109 127)(110 126)(111 125)(112 124)(113 123)(114 122)(115 121)(116 160)(117 159)(118 158)(119 157)(120 156)

G:=sub<Sym(160)| (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,81)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132), (1,78)(2,79)(3,80)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74)(38,75)(39,76)(40,77)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148)(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,62)(2,61)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,80)(24,79)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(81,155)(82,154)(83,153)(84,152)(85,151)(86,150)(87,149)(88,148)(89,147)(90,146)(91,145)(92,144)(93,143)(94,142)(95,141)(96,140)(97,139)(98,138)(99,137)(100,136)(101,135)(102,134)(103,133)(104,132)(105,131)(106,130)(107,129)(108,128)(109,127)(110,126)(111,125)(112,124)(113,123)(114,122)(115,121)(116,160)(117,159)(118,158)(119,157)(120,156)>;

G:=Group( (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,81)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,121)(70,122)(71,123)(72,124)(73,125)(74,126)(75,127)(76,128)(77,129)(78,130)(79,131)(80,132), (1,78)(2,79)(3,80)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74)(38,75)(39,76)(40,77)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148)(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,62)(2,61)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,80)(24,79)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(81,155)(82,154)(83,153)(84,152)(85,151)(86,150)(87,149)(88,148)(89,147)(90,146)(91,145)(92,144)(93,143)(94,142)(95,141)(96,140)(97,139)(98,138)(99,137)(100,136)(101,135)(102,134)(103,133)(104,132)(105,131)(106,130)(107,129)(108,128)(109,127)(110,126)(111,125)(112,124)(113,123)(114,122)(115,121)(116,160)(117,159)(118,158)(119,157)(120,156) );

G=PermutationGroup([(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,81),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,121),(70,122),(71,123),(72,124),(73,125),(74,126),(75,127),(76,128),(77,129),(78,130),(79,131),(80,132)], [(1,78),(2,79),(3,80),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74),(38,75),(39,76),(40,77),(81,129),(82,130),(83,131),(84,132),(85,133),(86,134),(87,135),(88,136),(89,137),(90,138),(91,139),(92,140),(93,141),(94,142),(95,143),(96,144),(97,145),(98,146),(99,147),(100,148),(101,149),(102,150),(103,151),(104,152),(105,153),(106,154),(107,155),(108,156),(109,157),(110,158),(111,159),(112,160),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,62),(2,61),(3,60),(4,59),(5,58),(6,57),(7,56),(8,55),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,80),(24,79),(25,78),(26,77),(27,76),(28,75),(29,74),(30,73),(31,72),(32,71),(33,70),(34,69),(35,68),(36,67),(37,66),(38,65),(39,64),(40,63),(81,155),(82,154),(83,153),(84,152),(85,151),(86,150),(87,149),(88,148),(89,147),(90,146),(91,145),(92,144),(93,143),(94,142),(95,141),(96,140),(97,139),(98,138),(99,137),(100,136),(101,135),(102,134),(103,133),(104,132),(105,131),(106,130),(107,129),(108,128),(109,127),(110,126),(111,125),(112,124),(113,123),(114,122),(115,121),(116,160),(117,159),(118,158),(119,157),(120,156)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
04000
0010
0001
,
40000
0100
0010
0001
,
40000
0100
00393
001715
,
1000
04000
0071
003434
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,39,17,0,0,3,15],[1,0,0,0,0,40,0,0,0,0,7,34,0,0,1,34] >;

92 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D5A5B8A···8H10A···10N20A···20P40A···40AF
order12···22···24444558···810···1020···2040···40
size11···120···202222222···22···22···22···2

92 irreducible representations

dim1111222222222
type+++++++++++++
imageC1C2C2C2D4D4D5D8D10D10D20D20D40
kernelC22×D40C2×D40C22×C40C22×D20C2×C20C22×C10C22×C8C2×C10C2×C8C22×C4C2×C4C23C22
# reps11212312812212432

In GAP, Magma, Sage, TeX

C_2^2\times D_{40}
% in TeX

G:=Group("C2^2xD40");
// GroupNames label

G:=SmallGroup(320,1412);
// by ID

G=gap.SmallGroup(320,1412);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^40=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽